Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
2.
Am J Otolaryngol ; 45(3): 104258, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38513512

RESUMO

OBJECTIVES: This study aimed to compare the side effects of different steroids used in the intratympanic injections (IT). METHODS: One hundred and sixty patients diagnosed with sudden sensorineural hearing loss and undergoing IT were assigned to four groups based on the type or concentration of steroids administered (Group DM5: 5 mg/ml Dexamethasone sodium phosphate; Group DM10: 10 mg/ml Dexamethasone sodium phosphate; Group MP: 40 mg/ml Methylprednisolone sodium succinate; Group BM: 4 mg/ml Betamethasone sodium phosphate). Each group comprised 40 patients, and all participants received IT six times. The study assessed and compared the degrees and duration of pain, dizziness, and tympanic membrane damage following IT. Patients were asked to report the pain they felt using the numeric rating scale (NRS). RESULTS: NRS scores for pain after IT showed significant differences among the four groups (p < 0.001). The average NRS scores for pain in each group were as follows: Group DM5: 1.53 ± 1.04; Group DM10: 1.45 ± 1.30; Group MP: 4.33 ± 2.22; Group BM: 6.03 ± 1.46. The durations of pain after IT also exhibited significant differences among the four groups (p < 0.001), with the longest duration observed in Group MP at 31.93 ± 15.20 min. CONCLUSION: Different types of steroids could lead to varying degrees of pain when used in IT. Betamethasone could cause the most severe pain, and methylprednisolone could result in the longest duration of pain.

3.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
4.
Ecol Evol ; 14(3): e11084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469048

RESUMO

The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.

5.
Theor Appl Genet ; 137(3): 67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441674

RESUMO

KEY MESSAGE: A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Triticum/genética , Mapeamento Cromossômico , Alelos , Embaralhamento de DNA
6.
Angew Chem Int Ed Engl ; 63(16): e202401260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372399

RESUMO

Formamidinium lead iodide (FAPbI3) represents an optimal absorber material in perovskite solar cells (PSCs), while the application of FAPbI3 in inverted-structured PSCs has yet to be successful, mainly owing to its inferior film-forming on hydrophobic or defective hole-transporting substrates. Herein, we report a substantial improvement of FAPbI3-based inverted PSCs, which is realized by a multifunctional amphiphilic molecular hole-transporter, (2-(4-(10H-phenothiazin-10-yl)phenyl)-1-cyanovinyl)phosphonic acid (PTZ-CPA). The phenothiazine (PTZ) based PTZ-CPA, carrying a cyanovinyl phosphonic acid (CPA) group, forms a superwetting hole-selective underlayer that enables facile deposition of high-quality FAPbI3 thin films. Compared to a previously established carbazole-based hole-selective material (2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid (MeO-2PACz), the crystallinity of FAPbI3 is enhanced and the electronic defects are passivated by the PTZ-CPA more effectively, resulting in remarkable increases in photoluminescence quantum yield (four-fold) and Shockley-Read-Hall lifetime (eight-fold). Moreover, the PTZ-CPA shows a larger molecular dipole moment and improved energy level alignment with FAPbI3, benefiting the interfacial hole-collection. Consequently, FAPbI3-based inverted PSCs achieve an unprecedented efficiency of 25.35 % under simulated air mass 1.5 (AM1.5) sunlight. The PTZ-CPA based device shows commendable long-term stability, maintaining over 90 % of its initial efficiency after continuous operation at 40 °C for 2000 hours.

7.
Laryngoscope ; 134(2): 937-944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37421255

RESUMO

OBJECTIVE: Our team designed a long-lasting, well-sealed microphone, which uses laser welding and vacuum packaging technology. This study examined the sensitivity and effectiveness of this new floating piezoelectric microphone (NFPM) designed for totally implantable cochlear implants (TICIs) in animal experiments and intraoperative testing. METHODS: Different NFPM frequency responses from 0.25 to 10 kHz at 90 dB SPL were analyzed using in vivo testing of cats and human patients. The NFPM was tested in different positions that were clamped to the ossicular chains or placed in the tympanic cavity of cats and human patients. Two volunteers' long incus foot and four cats' malleus neck of the ossicular chain were clamped with the NSFM. The output electrical signals from different locations were recorded, analyzed, and compared. The NFPM was removed after the test without causing any damage to the middle-ear structure of the cats. Intraoperative tests of the NFPM were performed during the cochlear implant surgery and the cochlear implant surgery was completed after all tests. RESULTS: Compared with the results in the tympanic cavity, the NFPM could detect the vibration from the ossicular chain more sensitively in cat experiments and intraoperative testing. We also found that the signal output level of the NFPM decreased as the acoustic stimulation strength decreased in the intraoperative testing. CONCLUSION: The NFPM is effective in the intraoperative testing, making it feasible as an implantable middle-ear microphone for TICIs. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:937-944, 2024.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Humanos , Desenho de Prótese , Orelha Média/cirurgia , Ossículos da Orelha/cirurgia
8.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
9.
Natl Sci Rev ; 10(5): nwad057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274941

RESUMO

The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.

10.
Natl Sci Rev ; 10(5): nwad072, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37287807

RESUMO

Circularly polarized luminescence (CPL) is an important part in the research of modern luminescent materials and photoelectric devices. Usually, chiral molecules or chiral structures are the key factors to induce CPL spontaneous emission. In this study, a scale-effect model based on scalar theory was proposed to better understand the CPL signal of luminescent materials. Besides chiral structures being able to induce CPL, achiral ordered structures can also have a significant influence on CPL signals. These achiral structures are mainly reflected in the particle scale in micro-order or macro-order, i.e. the CPL signal measured under most conditions depends on the scale of the ordered medium, and does not reflect the inherent chirality of the excited state of the luminescent molecule. This kind of influence is difficult to be eliminated by simple and universal strategies in macro-measurement. At the same time, it is found that the measurement entropy of CPL detection may be the key factor to determine the isotropy and anisotropy of the CPL signal. This discovery would bring new opportunities to the research of chiral luminescent materials. This strategy can also greatly reduce the development difficulty of CPL materials and show high application potential in biomedical, photoelectric information and other fields.

11.
Adv Mater ; 35(26): e2301871, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37154357

RESUMO

Halide diffusion across the charge-transporting layer followed by a reaction with metal electrode represents a critical factor limiting the long-term stability of perovskite solar cells (PSCs). In this work, a supramolecular strategy with surface anion complexation is reported for enhancing the light and thermal stability of perovskite films, as well as devices. Calix[4]pyrrole (C[4]P) is demonstrated as a unique anion-binding agent for stabilizing the structure of perovskite by anchoring surface halides, which increases the activation energy for halide migration, thus effectively suppressing the halide-metal electrode reactions. The C[4]P-stabilized perovskite films preserve their initial morphology after ageing at 85 °C or under 1 sun illumination in humid air over 50 h, significantly outperforming the control samples. This strategy radically tackles the halide outward-diffusion issue without sacrificing charge extraction. Inverted-structured PSCs based on C[4]P modified formamidinium-cesium perovskite exhibit a champion power conversion efficiency of over 23%. The lifespans of unsealed PSCs are unprecedentedly prolonged from dozens of hours to over 2000 h under operation (ISOS-L-1) and 85 °C ageing (ISOS-D-2). When subjected to a harsher protocol of ISOS-L-2 with both light and thermal stresses, the C[4]P-based PSCs maintain 87% of original efficiency after ageing for 500 h.

12.
Science ; 380(6643): 404-409, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104579

RESUMO

Controlling the perovskite morphology and defects at the buried perovskite-substrate interface is challenging for inverted perovskite solar cells. In this work, we report an amphiphilic molecular hole transporter, (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid, that features a multifunctional cyanovinyl phosphonic acid group and forms a superwetting underlayer for perovskite deposition, which enables high-quality perovskite films with minimized defects at the buried interface. The resulting perovskite film has a photoluminescence quantum yield of 17% and a Shockley-Read-Hall lifetime of nearly 7 microseconds and achieved a certified power conversion efficiency (PCE) of 25.4% with an open-circuit voltage of 1.21 volts and a fill factor of 84.7%. In addition, 1-square centimeter cells and 10-square centimeter minimodules show PCEs of 23.4 and 22.0%, respectively. Encapsulated modules exhibited high stability under both operational and damp heat test conditions.

13.
Trials ; 23(1): 1049, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575531

RESUMO

BACKGROUND: Chronic subjective tinnitus poses significant challenges in clinical practice, and it is usually associated with hearing impairment, particularly with high-frequency sensorineural hearing loss (SNHL). Patients suffering from tinnitus with SNHL experience one of the most severe sensory disabilities, and this has devastating effects on their quality of life. Nowadays, mild to moderate SNHL can be managed with a properly fitted hearing aid (HA) that provides sound amplification, and several studies suggest that HAs may also benefit those with tinnitus. However, inadequate attention has been paid by medical personnel to the impact of HA use in residual hearing protection for patients with tinnitus and coexisting SNHL, and existing evidence is still at a preliminary stage. This study aims to identify and evaluate the efficacy of the use of HAs in both sound perception and residual hearing preservation among patients with tinnitus and coexisting SNHL. METHODS AND DESIGN: The present study is a prospective, single-center, outcome assessor and data analyst-blinded, randomized, controlled trial. Eligible participants will be recruited and randomly allocated into the HA intervention group and the waiting list control group at a ratio of 1:1. The primary outcome is to evaluate the severity of tinnitus using the Tinnitus Handicap Inventory as a continuous variable at 6 months from randomization. Secondary outcome measures include changes in hearing status and mental states. The trial will last 6 months, with follow-up visits at 3 months and 6 months. DISCUSSION: This will be the first randomized, controlled trial to identify and evaluate HAs' efficacy on residual hearing preservation among tinnitus patients with coexisting high-frequency SNHL in China. We are aiming for novelty and generalizability, and strengths of this study are that it will examine the effectiveness of HA in patients with tinnitus and hearing impairment and will further explore the residual hearing protection provided by HA treatment in the tinnitus group. TRIAL REGISTRATION: ClinicalTrials.gov NCT05343026. Registered on April 25, 2022.


Assuntos
Surdez , Auxiliares de Audição , Perda Auditiva Neurossensorial , Perda Auditiva , Zumbido , Humanos , Zumbido/diagnóstico , Zumbido/terapia , Zumbido/complicações , Qualidade de Vida , Estudos Prospectivos , Resultado do Tratamento , Audição , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/terapia , Percepção , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Nat Commun ; 13(1): 7454, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460635

RESUMO

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

15.
Laryngoscope Investig Otolaryngol ; 7(5): 1559-1567, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36258873

RESUMO

Background: Salvage intratympanic steroids (ITS) works in patients with idiopathic sudden sensorineural hearing loss (ISSNHL) after failure of initial therapy, but optimal timing of administration is unknown. Methods: Two hundred and seventy patients with ISSNHL were included. Among them, 180 were treated with ITS and standard medical treatment (SMT) and the other 90 received SMT along. The hearing threshold before and after salvage treatment were compared. The relationship between the salvage starting time and hearing recovery was analyzed. Results: The hearing of ITS group improved more than that of the SMT group in all frequency bands. The effect of both strategies decreases with the delay of the starting time. ITS can improve hearing even if being administrated 5 weeks after onset while SMT failed after 3 weeks. Conclusion: Patients with profound ISSNHL can obtain extra hearing recovery from salvage ITS. The earlier salvage starts, the greater the patient benefits.

16.
Theor Appl Genet ; 135(8): 2907-2923, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794218

RESUMO

KEY MESSAGE: TaD11-2A affects grain size and root length and its natural variations are associated with significant differences in yield-related traits in wheat. Brassinosteroids (BRs) control many important agronomic traits and therefore the manipulation of BR components could improve crop productivity and performance. However, the potential effects of BR-related genes on yield-related traits and stress tolerance in wheat (Triticum aestivum L.) remain poorly understood. Here, we identified TaD11 genes in wheat (rice D11 orthologs) that encoded enzymes involved in BR biosynthesis. TaD11 genes were highly expressed in roots (Zadoks scale: Z11) and grains (Z75), while expression was significantly suppressed by exogenous BR (24-epiBL). Ectopic expression of TaD11-2A rescued the abnormal panicle structure and plant height (PH) of the clustered primary branch 1 (cpb1) mutant, and also increased endogenous BR levels, resulting in improved grain yields and grain quality in rice. The tad11-2a-1 mutant displayed dwarfism, smaller grains, sensitivity to 24-epiBL, and reduced endogenous BR contents. Natural variations in TaD11-2A were associated with significant differences in yield-related traits, including PH, grain width, 1000-grain weight, and grain yield per plant, and its favorable haplotype, TaD11-2A-HapI was subjected to positive selection during wheat breeding. Additionally, TaD11-2A influenced root length and salt tolerance in rice and wheat at seedling stages. These results indicated the important role of BR TaD11 biosynthetic genes in controlling grain size and root length, and also highlighted their potential in the molecular biological analysis of wheat.


Assuntos
Oryza , Triticum , Brassinosteroides , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Haplótipos , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
17.
Theor Appl Genet ; 135(7): 2531-2541, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35680741

RESUMO

KEY MESSAGE: A major stable QTL for flag leaf width was narrowed down to 2.5 Mb region containing two predicated putative candidate genes, and its effects on yield-related traits was characterized. Flag leaf width (FLW) is important to production in wheat. In a previous study, a major quantitative trait locus for FLW (QFlw-5B) was detected on chromosome 5B, within an interval of 6.5 cM flanked by the markers of XwPt-9103 and Xbarc142, using a mapping population of recombinant inbred lines derived from a cross between Kenong9204 (KN9204) and Jing411 (J411) (denoted as KJ-RILs). The aim of this study was to fine map QFlw-5B and characterize its genetic effects on yield-related traits. Multiple near-isogenic lines (NILs) were developed using one residual heterozygous line for QFlw-5B. Five recombinants for QFlw-5B were identified, and its location was narrowed to a 2.5 Mb region based on combined phenotypic and genotypic data analysis. This region contained 27 predicted genes, two of which were considered as the most likely candidate genes for QFlw-5B. The FLW of NIL-KN9204 was significantly higher than that of NIL-J411 across all the tested environments. Meanwhile, significant increases in plant height, grain width and 1000-grain weight were observed in NIL-KN9204 compared with that in NIL-J411. These results indicate that QFlw-5B has great potential for marker-assisted selection in wheat breeding programs designed to improve both plant architecture and yield. This study also provides a basis for the map-based cloning of QFlw-5B.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Folhas de Planta/genética , Triticum/genética
18.
Chemistry ; 28(32): e202200701, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404525

RESUMO

As the key properties of perovskite solar cells (PSCs), the hole extraction and transport capabilities of the hole transport material (HTM) affect the photovoltaic performance of PSCs to a considerable extent, while both capabilities can be adjusted by molecular planarity. Therefore, in this work, the molecular planarity of the HTM is systematically optimized to regulate the hole extraction and transport capabilities. Along with the improvement in planarity, the HTM's HOMO level is increased, leading to the enhancement of hole extraction capability. Meanwhile, the hole transport capability can also be improved due to the intensification of molecular stacking during the film formation. As a result, the planar HTM achieves a relatively high efficiency of 18.48 %, which is higher than that of spiro-OMeTAD. Accordingly, the molecular planarity presents an important impact on the photovoltaic performance of PSCs, providing us with a promising strategy for further optimization of efficient HTMs.

19.
Nature ; 604(7904): 72-79, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388196

RESUMO

Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1-3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6-9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h-1 g-1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.

20.
Chem Commun (Camb) ; 58(30): 4787-4790, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35343982

RESUMO

Herein, we demonstrate that a thiophene-modified quinoxaline core small molecule can be applied in Sb2(S,Se)3 solar cells. We reveal that the interaction between thiophene and Sb2(S,Se)3 through the Sb-S bond essentially improves the interfacial hole-extraction ability. This study provides a cost-effective dopant-free hole-transporting material for inorganic thin film solar cell applications with excellent stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...